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Synthesis of 2-Nitroindoles via the Sundberg lndole Synthesis 
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Abstract: A three-step sequence has been developed for converting o-nitrobenzaldehydes into 2- 
nitroindoles. The key step involves the thermolysis of 2-(o-azidophenyl)nigoethylene (10) in 
xylenes which gives 2-nitroindole (4) in 54% yield, akin to the classic Sundberg indole synthesis. 
This p ~ u r e  has also been utilized to synthesize 5,6-dimethoxy-2-nitroindole (14). 
© 1997 Elsevier Science Ltd. 

We recendy discovered a novel rearrangement leading to pyrrolo[2,3-b]indole 2, which occurs upon 

treatment of 3-niu'o-1-(phenylsulfonyl)indole (1) with ethyl isocyanoacetate and DBU.] We anticipated that this 

reaction would instead give pyrrolo[3,4-b]indole 3, a fused indole which potentially could be elaborated into 

novel carbazoles utilizing cycloaddition chemistry. In order to preclude this rearrangement and develop a 

succinct route to the pyrrolo[3,4-b]indole ring system, we decided to investigate this reaction with a 2- 

nitroindole substrate. 
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To our surprise, 2-nitroindole (4) is an unknown compound. Indeed, although the other five possible 

simple nitroindole compounds are all known compounds, 26  only two simple 2-nitroindoles have been 

synthesized, 3-methyl-2-ni~'oindole (5) 2 and 3-phenyl-2-nitroindole (6). 7 Both were obtained in low yield with 

undesirable 3-substitution. One of the most useful methods of elaborating the indole moiety at the 2-position is 

directed metalation. 8 Unfortunately, this technique is incompatible with nitro functionalization, due to the 

apparent lack of  an NO2 + equivalent capable of adding to a localized carbanion. 9 We now wish to report a 

general synthesis of 2-nitroindoles based on the classic Sundberg indole synthesis, 10 which involves the 

thermolysis of  ~-substituted-o-azidostyrenes. 
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The synthesis of 4 was achieved in three steps from 2-nitrobenzaldehyde (7) in 40% overall yield. 

Conversion of 7 into 2-azidobenzaldehyde (8) was accomplished in 92% yield with sodium azide in HMPA at 

ambient temperature following the procedure of Spagnolo. 11 The use of the carcinogenic solvent HMPA can be 

avoided by heating 7 and sodium azide in DMF for 20 hours at 60 °C to give 8 in 65% yield. Higher reaction 

temperatures lead to the formation of the undesirable side product anthranil (9). 12 Using the procedure of 

Molina, 13 8 was converted into the known nitrostyrene 10 in an improved 81% yield. 14 Finally, thermolysis of 

10 in xylenes at 140 °C for 12 hours gave 2-nitroindole (4) in 54% yield. 15 
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The three-step sequence was also utilized to synthesize 5,6-dimethoxy-2-nitroindole (14). Attempts to 

synthesize azide 12 from o-nitrobenzaldehyde 11 by heating in DMF failed, which was probably due to the 

decreased electrophilicity of the ring resulting from the presence of electron-rich methoxy groups. This 

conversion was finally realized by heating 1216 and sodium azide in HMPA at 60 qC for 9 hours to give 12 in 

53% yield. No reaction was observed in the absence of heating. A Henry reaction on 12 gave styrene 13 in 

53% yield. Finally, thermolysis of 13 in xylenes at 125 °C for 16 hours gave 14 in 45% yield. 17 
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Protection of 4 can be cleanly accomplished utilizing sodium hydride as the base in DMF. A few N- 

protected 2-nitroindoles have been synthesized by this method. For example, treatment of 4 with sodium 

hydride in DMF followed by benzenesulfonyl chloride gave 2-nitro-l-(phenylsulfonyl)indole (15) in 57% 

yield. 18 Likewise, 2-nitroindoles 16-18 were synthesized in good yields utilizing iodoethane (88% yield), 

benzyl bromide (72% yield), and tert-butyl phenyl carbonate (89% yield), respectively. 

1. Nail, DMF, 0 °C 
~ 15 R = SO2Ph 

2. see text 16 R = CH2CH 3 
P 

NO2 NO2 1"1 R = CH2Ph 
H R 18 R = CO2t-Bu 

A few years back, we discovered that 1,2-bis(phenylsulfonyl)indole (19) was capable of undergoing 

conjugate addition by lithium dimethylcuprate. 19 Treatment of 19 with lithium dimethylcuprate in ether gave 

indole 20 in 67% yield by conjugate addition and ejection of the phenylsulfonyl protecting group. Likewise, we 

now report that treatment of 15 with lithium dimethylcuprate gave known indole 52 in 30% yield. These 

reactions represent one of the very few known examples of formal nucleophilic addition to the indole 3- 

position. 20 We are continuing to study the reactions of these novel 2-nitroindoles. 

~ R "(CH3)2CuLi"= ~ ~ R  H3 
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19 R = SO2Ph 20 R = SO2Ph 
15 R=NO2 5 R=NO2 
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