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Synthesis of 2-Nitroindoles via the Sundberg Indole Synthesis
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Abstract: A three-step sequence has been developed for converting o-nitrobenzaldehydes into 2-
nitroindoles. The key step involves the thermolysis of 2-(o-azidophenyl)nitroethylene (10) in
xylenes which gives 2-nitroindole (4) in 54% yield, akin to the classic Sundberg indole synthesis.
This procedure has also been utilized to synthesize 5,6-dimethoxy-2-nitroindole (14).
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We recently discovered a novel rearrangement leading to pyrrolo[2,3-blindole 2, which occurs upon
treatment of 3-nitro- 1-(phenylsulfonyl)indole (1) with ethyl isocyanoacetate and DBU.! We anticipated that this
reaction would instead give pyrrolo[3,4-blindole 3, a fused indole which potentially could be elaborated into
novel carbazoles utilizing cycloaddition chemistry. In order to preclude this rearrangement and develop a

succinct route to the pyrrolo[3,4-blindole ring system, we decided to investigate this reaction with a 2-

nitroindole substrate.
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To our surprise, 2-nitroindole (4) is an unknown compound. Indeed, although the other five possible
simple nitroindole compounds are all known compounds,26 only two simple 2-nitroindoles have been
synthesized, 3-methyl-2-nitroindole (5)2 and 3-phenyl-2-nitroindole (6).7 Both were obtained in low yield with
undesirable 3-substitution. One of the most useful methods of elaborating the indole moiety at the 2-position is
directed metalation.8 Unfortunately, this technique is incompatible with nitro functionalization, due to the
apparent lack of an NO2* equivalent capable of adding to a localized carbanion.® We now wish to report a
general synthesis of 2-nitroindoles based on the classic Sundberg indole synthesis,!0 which involves the

thermolysis of B-substituted-o-azidostyrenes.
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The synthesis of 4 was achieved in three steps from 2-nitrobenzaldehyde (7) in 40% overall yield.
Conversion of 7 into 2-azidobenzaldehyde (8) was accomplished in 92% yield with sodium azide in HMPA at
ambient temperature following the procedure of Spagnolo.1l The use of the carcinogenic solvent HMPA can be
avoided by heating 7 and sodium azide in DMF for 20 hours at 60 °C to give 8 in 65% yield. Higher reaction
temperatures lead to the formation of the undesirable side product anthranil (9).12 Using the procedure of
Molina,!3 8 was converted into the known nitrostyrene 10 in an improved 81% yield.14 Finally, thermolysis of

10 in xylenes at 140 °C for 12 hours gave 2-nitroindole (4) in 54% yield.15
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The three-step sequence was also utilized to synthesize 5,6-dimethoxy-2-nitroindole (14). Attempts to
synthesize azide 12 from o-nitrobenzaldehyde 11 by heating in DMF failed, which was probably due to the
decreased electrophilicity of the ring resulting from the presence of electron-rich methoxy groups. This
conversion was finally realized by heating 1216 and sodium azide in HMPA at 60 °C for 9 hours to give 12 in
53% yield. No reaction was observed in the absence of heating. A Henry reaction on 12 gave styrene 13 in

53% yield. Finally, thermolysis of 13 in xylenes at 125 °C for 16 hours gave 14 in 45% yield.17
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Protection of 4 can be cleanly accomplished utilizing sodium hydride as the base in DMF. A few N-
protected 2-nitroindoles have been synthesized by this method. For example, treatment of 4 with sodium
hydride in DMF followed by benzenesulfonyl chloride gave 2-nitro-1-(phenylsulfonyl)indole (15) in 57%
yield.18 Likewise, 2-nitroindoles 16-18 were synthesized in good yields utilizing iodoethane (88% vyield),
benzyl bromide (72% yield), and zert-butyl phenyl carbonate (89% yield), respectively.

15 R = SOPh
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A few years back, we discovered that 1,2-bis(phenylsulfonyl)indole (19) was capable of undergoing
conjugate addition by lithium dimethylcuprate.19 Treatment of 19 with lithium dimethylcuprate in ether gave
indole 20 in 67% yield by conjugate addition and ejection of the phenylsulfonyl protecting group. Likewise, we
now report that treatment of 15 with lithium dimethylcuprate gave known indole 52 in 30% yield.  These

reactions represent one of the very few known examples of formal nucleophilic addition to the indole 3-

position.20 We are continuing to study the reactions of these novel 2-nitroindoles.
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